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Abstract. Many problems on graphs can be expressed in the following
language: given a graph G = (V,E) and a terminal set T ⊆ V , find a
minimum size set S ⊆ V which intersects all “structures” (such as cycles
or paths) passing through the vertices in T . We call this class of problems
as terminal set problems. In this paper we introduce a general method
to obtain faster exact exponential time algorithms for many terminal set
problems. More precisely, we show that

– Node Multiway Cut can be solved in time O(1.4766n).
– Directed Unrestricted Node Multiway Cut can be solved in

time O(1.6181n).
– There exists a deterministic algorithm for Subset Feedback Ver-

tex Set running in time O(1.8980n) and a randomized algorithm
with expected running time O(1.8826n). Furthermore, Subset Feed-
back Vertex Set on chordal graphs can be solved in time O(1.6181n).

– Directed Subset Feedback Vertex Set can be solved in time
O(1.9993n).

A key feature of our method is that, it uses the existing best polynomial
time, fixed parameter tractable and exact exponential time algorithms
for the non-terminal version of the same problem (i.e. when T = V ),
as subroutines. Therefore faster algorithms for these special cases will
imply further improvements in the running times of our algorithms. Our
algorithms for Node Multiway Cut, and Subset Feedback Vertex
Set on chordal graphs improve the current best algorithms for these
problems and answers an open question posed in [15]. Furthermore, our
algorithms for Directed Unrestricted Node Multiway Cut and
Directed Subset Feedback Vertex Set are the first exact algorithms
improving upon the brute force O∗(2n)-algorithms.

1 Introduction

The goal of the design of moderately exponential time algorithms for NP-complete
problems is to establish algorithms for which the worst-case running time is
provably faster than the one of enumerating all prospective solutions, or loosely



speaking, algorithms better than brute-force enumeration. For example, for NP-
complete problems on graphs on n vertices and m edges whose solutions are
either subsets of vertices or edges, the brute-force or trivial algorithms basi-
cally enumerate all subsets of vertices or edges. This mostly leads to algorithms
of time complexity O∗(2n) or O∗(2m), based on whether we are enumerating
vertices or edges4. Thus the goal of exact algorithms for graph problems is to
improve upon the algorithms running in time O∗(2n) or O∗(2m). See the book
[11] for an introduction to exact exponential algorithms.

One of the most well studied direction in exact algorithms is to delete vertices
of the input graph such that the resulting graph satisfies some interesting prop-
erties. More precisely, a natural optimization problem associated with a graph
class G is the following: given a graph G, what is the minimum number of ver-
tices to be deleted from G to obtain a graph in G? For example, when G is the
class of empty graphs, forests or bipartite graphs, the corresponding problems
are Vertex Cover (VC), Feedback Vertex Set (FVS) and Odd Cycle
Transversal (OCT), respectively. The best known algorithms for VC, FVS
and OCT run in time O∗(1.2108n) [26], O∗(1.7347n) [12] and O∗(1.4661n) [20,
26] respectively. The other problems in this class for which non-trivial exact
algorithms are known include finding an induced r-regular subgraph [16], in-
duced subgraph of bounded degeneracy [23] and induced subgraph of bounded
treewidth [12].

In this paper we study another class of graph problems which we call as
terminal set problems. In these problems, the input is a graph G = (V,E) and
a terminal set T ⊆ V , and the goal is to find a minimum size set S ⊆ V
that intersects certain structures such as cycles or paths passing through the
vertices in T . In this paper we introduce a general method to obtain faster
exact exponential time algorithms for many terminal set problems. The general
algorithmic technique is the following. Let the size of the terminal set T be
k. We first observe that the size of the optimum solution is at most k (or a
function of k). Let S be an optimum solution to the problem and let X =
S ∩ (V \ T ). We guess X and delete it from G. Since S \ X ⊆ T , we create
an auxiliary graph on T and determine the rest of the solution using either a
known polynomial time algorithm, or a fixed parameter tractable algorithm, or
a non-trivial exact algorithm for the non-terminal version (when T = V ) of the
same problem. We now provide a list of problems for which we give improved
or new algorithms using our method together with a short overview of previous
work on each application.

Node Multiway Cut and Directed Unrestricted Node Multiway Cut:
A fundamental min-max theorem about connectivity in graphs is Menger’s The-
orem, which states that the maximum number of vertex disjoint paths between
two vertices s and t, is equal to the minimum number of vertices whose removal
separates these two vertices. Indeed, a maximum set of vertex disjoint paths
between s, t and a minimum size set of vertices separating these two vertices

4 Throughout this paper we use the O∗ notation which suppresses polynomial factors.
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can be computed in polynomial time. A known generalization of this theorem,
commonly known as Mader’s T -path Theorem [18] states that, given a graph G
and a subset T of vertices, there are either k vertex disjoint paths with only the
end points in T (such paths are called T -paths), or there is a vertex set of size
at most 2k which intersects every T -path. Although computing a maximum set
of vertex disjoint T -paths can be done in polynomial time by using matching
techniques, the decision version of the dual problem of finding a minimum set of
vertices that intersects every T -path is NP-complete for |T | > 2. Formally, this
problem is the following classical Node Multiway Cut problem.

Node Multiway Cut (NMC)
Input : An undirected graph G = (V,E) and a set of terminals T =
{t1, t2, . . . , tk}.
Question: Find a set S ⊆ V (G) \ T of minimum size such that G \ S has no
path between a ti, tj pair for any i 6= j.

This is a very well studied problem in terms of approximation, as well as parame-
terized algorithms [5, 8, 14, 19]. A variant of this problem where S is allowed to in-
tersect the set T , is known as Unrestricted Node Multiway Cut (UNMC).
The best known parameterized algorithm for Node Multiway Cut decides in
time O∗(2`) whether there is a solution of size at most ` or not. Fomin et al. [10]
designed an exact algorithm for UNMC running in time O∗(1.8638n). In this
paper we design an algorithm with running time O(1.4766n) for both NMC and
UNMC.

Next we consider the directed variant of Node Multiway Cut, namely
Directed Node Multiway Cut (DNMC) where the input is a directed graph
and a set T = {t1, . . . , tk} of terminals and the objective is to find a set of
minimum size which intersects every ti → tj path for every ti, tj ∈ T with i 6= j.
For the unrestricted version of this problem, namely Directed Unrestricted
Node Multiway Cut (DUNMC), we design an exact algorithm with running
time O(1.6181n).

Subset Feedback Vertex Set and Directed Subset Feedback Ver-
tex Set: An exact algorithm for Feedback Vertex Set (FVS) – finding a
minimum sized vertex subset such that its removal results in an acyclic graph –
remained elusive for several years. In a breakthrough paper Razgon [24] designed
an exact algorithm for this problem running in time O∗(1.8899n). Later, Fomin
et al. [9] building upon the work in [24] designed an exact algorithm for FVS
running in time O∗(1.7548n). The current best known algorithm for this problem
uses potential maximal clique machinery and runs in time O∗(1.7347n) [13]. Raz-
gon studied the directed version of FVS and obtained an exact algorithm running
in time O∗(1.9977n) [25]. This is the only known non-trivial exact algorithm for
Directed Feedback Vertex Set (DFVS). A natural generalization of the
Feedback Vertex Set problem is when we only want to hit all the cycles
passing through a specified set of terminals. This leads to the following problem.
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Subset Feedback Vertex Set (SFVS)
Input : An undirected graph G = (V,E), a set of terminals T ⊆ V of size k
Question: Find a minimum set of vertices which hits every cycle passing
through T

Fomin et al. [10] designed an algorithm for SFVS on general graphs which runs
in time O∗(1.8638n). It is important to note that their algorithm not only finds
a minimum sized solution, but also enumerates all minimal solutions in the
same time. Using our methodology we design an algorithm for SFVS which
runs in time O∗(1.8980n). However, if we are allow randomization then we can
design an algorithm with an expected running time of O∗(1.8826n). Golovach
et al. [15] initiated the study of exact algorithms for SFVS on special graph
classes by giving an enumeration algorithm for SFVS on chordal graphs which
runs in time O∗(1.6708n). They left it as an open question whether there exists
algorithms for SFVS on chordal graphs (even on split graphs) which are faster
than O∗(1.6708n). Though our algorithm using the described methodology for
SFVS in general does not improve on the best known algorithm, it answers
this question in the affirmative for SFVS on chordal graphs and we obtain an
algorithm with running time O(1.6181n). More generally, our algorithm for SFVS
runs in O(1.6181n) on any graph class G which is closed under vertex deletions
and edge contractions, and where the weighted FVS problem can be solved in
polynomial time. Finally, we also consider the directed variant of the SFVS
problem, namely Directed Subset Feedback Vertex Set (DSFVS), and
obtain an algorithm with running time O(1.9993n).

2 Preliminaries

Let C be a cycle in a graph G. A chord of C is an edge e /∈ C which connects
two vertices of C. A graph G is called a chordal graph if every cycle on four or
more vertices has a chord.

Now we define the contraction of an edge or a subgraph in G. Let G be an
undirected graph and let (u, v) be an edge in G. Let G′ be the graph obtained
from G in the following manner. We add a new vertex w. For every edge (u, z)
where z 6= v we add an edge (w, z), and for every edge (y, v) where y 6= u we
add an edge (y, w). Finally we delete the vertices u and v, and any parallel edges
from the graph. We say that G′ is obtained from G by contracting the edge
(u, v). Let H be a subgraph of G. Consider the graph G′ obtained from G by
contracting every edge of H in a arbitrary order. We say that G′ is obtained
from G by contracting the subgraph H.

Now we define the torso graph of a subset of vertices in G. Let G = (V,E) be
an undirected graph and T and V ′ be subsets of V . We denote by torso(T, V ′)
the graph defined in the following manner. The vertex set of this graph is T and
the edge set comprises of all pairs (ti, tj) such that there is a ti − tj path in G
whose internal vertices lie in V ′ \ T or there is an edge (ti, tj) ∈ E.

We also define an analogous notion of a torso graph in directed graphs. Let
D = (V,A) be an directed graph and T and V ′ be subsets of V . We denote by

4



torso(T, V ′) the digraph defined in the following manner. The vertex set of this
graph is T and the edge set comprises of all ordered pairs (ti, tj) such that there
is a directed ti − tj path in D whose internal vertices lie in V ′ \ T or there is an
edge (ti, tj) ∈ A.

Finally, we define a generalization of the torso graphs. Let G = (V,E) be
an undirected graph and T1, T2, . . . T` and V ′ be subsets of V . We denote by
`-torso(T1, . . . , T`, V

′) the graph defined as follows. It has vertex set T = T1 ∪
T2∪· · ·∪T`. and the edge set comprises of all pairs (ti, tj) such that ti ∈ Ti′ and
tj ∈ Tj′ for some i′ 6= j′ and there is a ti − tj path in G whose internal vertices
lie in V ′ \ T .

3 Node Multiway Cut

In this section we design an exact algorithm for the Node Multiway Cut prob-
lem. We begin by giving an algorithm for unrestricted version of this problem.

3.1 Unrestricted Node Multiway Cut

The following observation follows from the fact that the set of terminals in an
instance of Unrestricted Node Multiway Cut itself is a potential solution.

Observation 1 Let (G,T ) be an instance of Unrestricted Node Multiway
Cut and S be an optimum solution to this instance . Then |S| ≤ |T |.

Now we design an algorithm for Unrestricted Node Multiway Cut
using the FPT algorithm for Node Multiway Cut and Observation 1. This
algorithm uses the FPT algorithm for multiway cut of Cygan et al.[8]. We will
use this algorithm for the instances where k is“small”.

Lemma 1. Let (G,T ) be an instance of Unrestricted Node Multiway
Cut where |T | = k. Then we can find an optimum solution to this instance
in time O∗(2k).

Proof. We begin by performing the following transformation on the given in-
stance. For each terminal ti ∈ T , we add a new vertex t′i and make it adjacent
to ti alone. Let T ′ be the set of these new vertices and G′ be the graph thus
constructed. It is easy to see that the set of optimum solutions to the instance
(G′, T ′) of Node Multiway Cut and the set of optimum solutions to the
instance (G,T ) of Unrestricted Node Multiway Cut are in one to one cor-
respondence. Therefore, we may utilise the algorithm of [8] which solves Node
Multiway Cut in time O∗(2`) where ` is the size of the optimum solution. By
Observation 1, we have that ` ≤ k and therefore, the statement of the lemma
follows. ut

Next, we design another algorithm for Unrestricted Node Multiway
Cut which will be used for the instances where k is “large”.
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Lemma 2. Let (G,T ) be an instance of Unrestricted Node Multiway
Cut where G = (V,E) and let S be an optimum solution to this instance.
Let X = S ∩ (V \ T ) and Y = S \ X. Then Y is a vertex cover of the
graph torso(T, V \ X). Conversely, if Y ′ is any vertex cover for the graph
torso(T, V \X), then the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G′ = torso(T, V \X).
Let E′ be the edge set of G′. Suppose that Y is not a vertex cover of G′ and
there is an edge (ti, tj) ∈ E′ which is not covered by Y . Observe that (ti, tj) /∈ E,
since this would contradict the assumption of S being a solution. Therefore, it
must be the case that there is a path P between ti and tj in G[V \ X] whose
internal vertices are disjoint from T . Since this path is disjoint from both X and
Y , it is also present in the graph G\S, a contradiction. Hence, we conclude that
Y is indeed a vertex cover of torso(T, V \X).

We now show that for any vertex cover Y ′ of G′, the set X∪Y ′ is a solution to
the instance (G,T ) of Unrestricted Node Multiway Cut. Suppose to the
contrary that that there is a vertex cover Y ′ of G′ such that the set S′ = X ∪Y ′
is not a solution to the instance (G,T ). That is, there is a ti-tj path in G \ S′
for some ti, tj ∈ T . Observe that this implies the existence of a ti′ -tj′ path P
for some ti′ , tj′ ∈ T such that the internal vertices of P are disjoint from T ∪S′.
Therefore the edge (ti′ , tj′) is not covered by Y ′ in G′, a contradiction. This
completes the proof this lemma. ut

Using the above lemma and the FPT algorithm for Vertex Cover of Chen et
al.[4], we are able to show the following lemma.

Lemma 3. There is an algorithm that, given an instance (G = (V,E), T ) of

Unrestricted Node Multiway Cut, runs in time O
(

1.7850n
(
1.2738
1.7850

)k)
and

returns an optimum solution where k = |T | and n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T )
such that |X| ≤ k, we construct the graph GX = torso(T, V \X) and compute
a minimum vertex cover YX for GX . We compute the minimum vertex cover by
using the FPT algorithm of [4], which runs in time O∗(1.2738`) where ` is the
size of an optimum vertex cover. Finally, we return the set X ∪ YX which is a
smallest solution over all choices of X. The correctness of this algorithm follows
from Lemma 2.

In order to bound the running time of this algorithm, first observe that for
each X, the set YX has size at most k − |X|. Therefore, the FPT algorithm
we use to compute a minimum vertex cover of torso(T, V \ X) runs in time
O∗(1.2738k−|X|). Summing over all choices of X, the time taken by our algorithm
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is upper bounded by

k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

= O∗(1.2738k)

k∑
x=0

(
n− k
x

)(
1

1.2738

)x
= O∗(1.2738k)

(
1 +

1

1.2738

)n−k
= O

(
1.7850n

(
1.2738

1.7850

)k)

ut

Now we are ready to prove the main theorem of this section.

Theorem 2. There is an algorithm that, given an instance (G = (V,E), T ) of
Unrestricted Node Multiway Cut, runs in time O(1.4766n) and returns
an optimum solution where n = |V |.

Proof. Let (G,T ) be the given instance of Unrestricted Node Multiway
Cut and |T | = k. Recall that we have described two different algorithms for
Unrestricted Node Multiway Cut. We now choose either of these algo-
ithms based on the values of k and n. If k ≤ 0.5622n, then we use the algorithm
described in Lemma 1. In this case, the running time is upper bounded by
O∗(2k) ≤ O∗(20.5622n) ≤ O(1.4766n). If k > 0.5622n, then we use the algorithm

described in Lemma 3. This algorithm runs in time O
(

1.7850n
(
1.2738
1.7850

)k)
which

is a decreasing function of k. Substituting k = 0.5622n, we get an upper bound
on the running time as O(1.4766n). This completes the proof of the theorem. ut

3.2 Node Multiway Cut

In this subsection, we give an exact algorithm for the Node Multiway Cut
problem. We start with the following observation which follows from the fact
that any solution to an instance of Node Multiway Cut is disjoint from the
set of terminals in the instance.

Observation 3 Let (G,T ) be an instance of Node Multiway Cut. If T is
not an independent set in G, then there is no solution to the instance (G,T ).
Furthermore, if two terminals t1 and t2 have a common neighbor v, then v must
be in every solution for the given instance.

Due to Observation 3, we may assume that the terminal set is independent
and the neighborhoods of the terminals in G are pairwise disjoint. This reduces
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the restricted Node Multiway Cut to the following generalization of the Un-
restricted Node Multiway Cut, also known as the Group Multiway Cut
problem.

Group Multiway Cut
Input : An undirected graph G = (V,E) and pairwise disjoint sets of terminals
{T1, T2, . . . , T`}.
Question: Find a set S ⊆ V (G) of minimum size such that G\S has no u−v
path for any u ∈ Ti, v ∈ Tj and i 6= j.

In the following, we describe an exact algorithm for Group Multiway Cut.
The ideas and arguments that are similar to those used in the proof of Theorem 2.
First we give a structural lemma about the vertices in Ti.

Lemma 4. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut. Let
G′ be the graph obtained by removing from G, the edges in G[Ti] for every i ∈
{1, . . . l}. Then, S ⊆ V is a solution to the instance (G,T ) if and only if it is
also a solution to the instance (G′, T ′).

Proof. Since G′ is a subgraph of G, any solution for (G,T ) is also a solution
for (G′, T ′). We now consider the reverse direction. Let S be a solution for
(G′, T ′). We claim that S is also a solution for (G,T ). Suppose that this is not
the case, that is, there is a path P in G from ui ∈ Ti to uj ∈ Tj disjoint from S.
Furthermore, we can assume without loss of generality that the internal vertices
of P are disjoint from Tr for every 1 ≤ r ≤ `. Observe that P is also present in
the graph G′, and therefore S intersects P by definition, a contradiction. ut

Due to Lemma 4, henceforth we can assume that each Ti is an independent
set in G. We have the following observation similar to Observation 1.

Observation 4 Let (G,T1, . . . , T`) be an instance of Group Multiway Cut.
Let S be an optimum solution to this instance and T = ∪`i=1Ti. Then, |S| ≤ |T |.

We have the following lemma which gives us an algorithm for the instances
where k is “small”. The proof of this lemma is very similar to the proof of
Lemma 1.

Lemma 5. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut, let
T = ∪`i=1Ti and let |T | = k. Then we can find an optimum solution to the given
instance of Group Multiway Cut in time O∗(2k).

Proof. We first reduce this instance to an instance of Node Multiway Cut,
by creating a new terminal ti, for each set Ti, which is then made adjacent to
all vertices in Ti. We then apply the FPT algorithm of Cygan et al [8] for Node
Multiway Cut to obtain the required solution. This takes time O∗(2k). ut

Next, we describe another algorithm for Group Multiway Cut. We will
use this algorithm for those instances where k is “large”. We have the following
lemma, whose proof is very similar to the proof of Lemma 2.

8



Lemma 6. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut where
G = (V,E) and let S be an optimum solution to this instance. Let X = S ∩
(V \ T ) and Y = S \ X where T = ∪`i=1Ti. Then, Y is a vertex cover of `-
torso(T1, . . . , T`, V \ X) and conversely, for any vertex cover Y ′ for the graph
`-torso(T1, . . . , T`, V \X), the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover ofG′ = `-torso(T1. . . . , T`, V \
X). Let E′ be the edge set of G′. Suppose that Y is not a vertex cover of G′

and there is an edge (ti, tj) ∈ E′ which is not covered by Y . Observe that if
ti ∈ Ti′ and tj ∈ Tj′ for i′ 6= j′ then (ti, tj) /∈ E, since this would contradict the
assumption of S being a solution. Furthermore, if i′ = j′, then (ti, tj) /∈ E since
it contradicts our assumption that Ti′ is an independent set. Therefore, it must
be the case that there is a path P between ti and tj in G[V \X] whose internal
vertices are disjoint from T . Since this path is disjoint from both X and Y , it is
also present in the graph G \ S, a contradiction. Hence, we conclude that Y is
indeed a vertex cover of G′.

We now show that for any vertex cover Y ′ of G′, the set X∪Y ′ is a solution to
the instance (G,T1, . . . , T`) of Group Multiway Cut. Suppose to the contrary
that that there is a vertex cover Y ′ of G′ such that the set S′ = X ∪ Y ′ is not a
solution to the instance (G,T1, . . . , T`). That is, there is a ti-tj path in G\S′ for
some ti ∈ T ′i and tj ∈ Tj′ where i′ 6= j′. Observe that this implies the existence
of a tp-tq path in G\S′ for some tp ∈ Tp′ and tq ∈ Tq′ where p′ 6= q′ such that the
internal vertices of P are disjoint from T ∪ S′. Therefore the edge (tp, tq) is not
covered by Y ′ in G′, a contradiction. This completes the proof of the lemma. ut

Next, using Lemma 6 we can show the following lemma.

Lemma 7. There is an algorithm that, given an instance (G = (V,E), T1, . . . , T`)

of Group Multiway Cut, runs in time O
(

1.7850n
(
1.2738
1.7850

)k)
and returns an

optimum solution where k = | ∪`i=1 Ti| and n = |V |.

Proof. Let T = ∪`i=1Ti. The description of the algorithm is as follows. For every
X ⊆ (V \T ) such that |X| ≤ k, we construct the graph GX = `-torso(T, V \X)
and compute a minimum vertex cover YX for GX . We compute the minimum
vertex cover by using the FPT algorithm of [4], which runs in time O∗(1.2738`)
where ` is the size of an optimum vertex cover. Finally, we return the set X ∪
YX which is a smallest solution over all choices of X. The correctness of this
algorithm follows from Lemma 6.

In order to bound the running time of this algorithm, first observe that for
each X, the set YX has size at most k − |X|. Therefore, the FPT algorithm
we use to compute a minimum vertex cover of torso(T, V \ X) runs in time
O∗(1.2738k−|X|).
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Summing over all choices of X, the time taken by our algorithm is,

k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

= O∗(1.2738k)

k∑
x=0

(
n− k
x

)(
1

1.2738

)x
= O∗(1.2738k)

(
1 +

1

1.2738

)n−k
= O

(
1.7850n

(
1.2738

1.7850

)k)

This completes the proof of the lemma. ut

Combining the algorithms from Lemma 5 and Lemma 7, we can show the
next theorem.

Theorem 5. There is an algorithm that, given an instance (G = (V,E), T1, . . . , T`)
of Group Multiway Cut, runs in time O(1.4766n) and returns an optimum
solution, where n = |V |.

Proof. Let (G,T1, . . . , T`) be the given instance of Group Multiway Cut and
T = ∪`i=1Ti and |T | = k. Recall that we have described two different algorithms
for Group Multiway Cut. We now choose either of these algorithms based
on the values of k and n.If k ≤ 0.5622n, then we use the algorithm described
in Lemma 5. In this case, the running time is upper bounded by O∗(2k) ≤
O(1.4766n). If k > 0.5622n, then we use the algorithm described in Lemma 7.

This algorithm runs in time O
(

1.7850n
(
1.2738
1.7850

)k)
which is a decreasing function

of k. Substituting k = 0.5622n, we get an upper bound on the running time as
O(1.4766n). This completes the proof of the theorem. ut

The following theorem follows from Theorem 5 and Observation 3.

Theorem 6. There is an algorithm that, given an instance (G = (V,E), T )
of Node Multiway Cut, runs in time O(1.4766n) and returns an optimum
solution, where n = |V |.

4 Directed Unrestricted Node Multiway Cut

In this section, we consider the Directed Unrestricted Node Multiway
Cut problem.

Directed Unrestricted Node Multiway Cut
Input : A directed graphD = (V,A) and a set of terminals T = {t1, t2, . . . , tk}.
Question: Find a set S ⊆ V of minimum size such that G \ S has no ti → tj
path for any i 6= j.
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Since we consider the version where the terminals can be deleted, we have
the following observation.

Observation 7 Let (G,T ) be an instance of Directed Unrestricted Node
Multiway Cut and S be an optimum solution to this instance . Then, |S| ≤ |T |.

The proof of the next lemma is identical to the proof of Lemma 2 and there-
fore, we do not repeat it.

Lemma 8. Let (D,T ) be an instance of Directed Unrestricted Node
Multiway Cut where D = (V,A) and let S be an optimum solution to this
instance. Let X = S ∩ (V \ T ) and Y = S ∩ X. Then Y is a vertex cover of
the graph torso(T, V \ X). Conversely if Y ′ is any vertex cover of the graph
torso(T, V \X), then the set X ∪ Y ′ is a solution to this instance.

Now we describe our algorithm for Directed Unrestricted Node Mul-
tiway Cut.

Theorem 8. Directed Unrestricted Node Multiway Cut can be solved
in time O∗(1.6181n).

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T )
such that |X| ≤ k, we construct the graph DX = torso(T, V \X) and compute
a minimum vertex cover YX for DX . We compute the minimum vertex cover by
using the FPT algorithm of Chen et al. [4], which runs in time O∗(1.2738`) where
` is the size of an optimum vertex cover. Finally, we return the set X∪YX which
is a smallest solution over all choices of X. The correctness of this algorithm
follows from Lemma 8.

Let T be the running time of our algorithm. We have the following claim.

Claim 1. T = O(1.6181n).

For every choice of X we run the FPT algorithm for vertex cover, which takes
time O∗(1.2738k−|X|). Therefore we have,

Proof.

T =

k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

=

k∑
x=0

(
n− k
x

)
O∗(1.618k−x)

= O∗(1.618k)

k∑
x=0

(
n− k
x

)(
1

1.618

)x
= O∗(1.618k)

(
1

1.618
+ 1

)n−k
= O∗(1.618k)× (1.6181)n−k

= O(1.6181n)

ut
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This completes the proof of the theorem. ut

5 Subset Feedback Vertex Set

In this section we design an exact algorithm for Subset Feedback Vertex
Set. We actually design two different algorithms for the problem, and then use
these two algorithms to construct our final exact algorithm.

Let (G,T ) be the given instance of Subset Feedback Vertex Set. Re-
call that we are allowed to pick terminal vertices into a solution. The following
observation follows from the fact that the set of terminals itself is a solution.

Observation 9 Let (G,T ) be an instance of Subset Feedback Vertex Set,
and let S be an optimum solution to this instance. Then |S| ≤ |T |.

Lemma 9. 1. There is an algorithm that, given an instance (G = (V,E), T ) of

Subset Feedback Vertex Set, runs in time O
(

1.2n
(

5
12

)k)
and returns

an optimum solution where k = |T | and n = |V |.
2. There is an algorithm that, given an instance (G = (V,E), T ) of Subset

Feedback Vertex Set, runs in time O
(

2n
(
1.7548

2

)k)
and returns an op-

timum solution where k = |T | and n = |V |.

Proof. For every X ⊆ (V \ T ) such that |X| ≤ k, let TX be the set of terminals
t such that, G \ X contains a cycle passing through t which contains no other
terminal vertex. Let GX be the graph obtained from G\(X∪TX) by contracting
every connected component of G \ (T ∪ X)5. Let YX be a minumum feedback
vertex set for GX containing only vertices of T .

For the first algorithm, we compute YX in the following manner. We assign
a weight of k+ 1 to the vertices not in T and 1 to the vertices in T . We then use
a FPT algorithm to compute a minimum feedback vertex set of GX of weight at
most k. We use the FPT algorithm of Chen et. al. [3] which runs in time O∗(5p),
where p is the minimum weight of an feedback vertex set.

For the second algorithm we compute YX by computing a maximum induced
forest of GX which contains all the non-terminal vertices and taking its comple-
ment. Let F be the set of all non-terminal vertices in GX and let q = n − |F |
be the number of terminal vertices in GX . We use the algorithm of Fomin et
al. [9](Section 3) on (GX , F ) and compute a maximum induced forest of GX
containing F . The arguments of Fomin et al. imply that the algorithm runs in
time O∗(1.7548q).

Let SX = X ∪ TX ∪ YX . We compute SX for every X and output the one
with the smallest number of vertices as our solution.

5 We can compute both TX and GX in polynomial time
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Correctness. The correctness of both the algorithm follow from the following
claims.

Claim 2. Let S be an optimum solution to the given instance of Subset Feed-
back Vertex Set and let X = S ∩ (V \ T ). Let TX be the set of terminals
t such that, G \ X contains a cycle passing through t which contains no other
terminal vertices. Then TX ⊆ S.

Proof. Let t ∈ TX and Ct is a cycle passing through T in G \X which doesn’t
contain any other terminal vertex. If t /∈ S, then S doesn’t intersect Ct. This is
a contradiction. Thus TX ⊆ S. This completes the proof of this claim. ut

The above claim shows the correctness of adding TX to the solution. The
following lemma shows that once TX is added to the solution, it suffices to
compute a minimum feedback vertex set for the graph GX .

Claim 3. Let S be an optimum solution to the given instance of Subset Feed-
back Vertex Set and let X = S\T and Y = S\X. Furthermore, suppose that
there are no cycles in G containing a unique vertex of T . Let GX be obtained
from G \X by contracting every connected component of G \ (T ∪X). Then Y
is a minimum feedback vertex set of GX . Conversely if Y ′ is any feedback vertex
set of GX , then the set X ∪ Y ′ is a solution for the given instance of Subset
Feedback Vertex Set.

Proof. We first show that for any W ⊆ T , there is a cycle in GX \W if and only
if there is a cycle in G \ (X ∪W ) which passes through T \W . The claim then
follows by setting W = Y and W = Y ′. First, observe that there is a unique
connected component Hu in (G \ (T ∪ X) corresponding to each non-terminal
vertex u ∈ GX .

Now consider a cycle C in GX \W and observe that all the terminal vertices
in C lie in T \W . We can replace each non-terminal vertex u in C with a path
Pu in Hu to obtain a closed walk in G. However this closed walk is actually a
cycle, since the paths {Pu} are pairwise vertex disjoint. Thus we obtain a cycle
in G \ (X ∪W ).

Conversely let C be a cycle in G \ (X ∪W ) that passes through a terminal
t ∈ T . We assume that C visits each connected component of G \ (T ∪ X) at
most once, as otherwise we can find a cycle C ′ which contains a subset of the
terminals contained in C, which satisfies this property. By our assumption, we
know that every terminal in T \ (TX ∪W ) has at most one edge to a connected
component in G\(T ∪X). Let Pu be a maximal subpath of C which is contained
in the connected component Hu of G \ (T ∪ X). Consider the closed walk C ′

obtained from C by contracting the maximal subpath Pu to the vertex u, for
every u. Observe that C ′ is actually a cycle since no vertex is repeated in C ′,
and C ′ is present in GX \W . This completes the proof of this claim. ut
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Running Time. Let T1 be the running time of the first algorithm and, T2 be
the running time of the second algorithms. The following two claims establish
the running times of both the algorithms.

Claim 4. T1 = O
(

1.2n × ( 5
1.2 )k

)
.

Proof. Note that |YX | ≤ |S|− |X|− |TX | ≤ k−|X|. Since for every choice of the
set X, we look for an FVS of weight at most k − |X| in GX , we have that,

T1 =

k∑
x=0

(
n− k
x

)
O∗(5k−x)

= O∗(5k)

k∑
x=0

(
n− k
x

)(1

5

)x
= O∗(5k)×

(
1 +

1

5

)n−k
= O∗

(
5k × (1.2)n−k

)
= O

(
1.2n × (

5

1.2
)k
)

ut

Claim 5. T2 = O
(

2n × ( 1.7548
2 )k

)
.

Proof. Observe the number of terminals is k, ` ≤ k. Therefore the exact algo-
rithm runs in time O∗(1.7548k). Therefore we have,

T2 =

k∑
x=0

(
n− k
x

)
O∗(1.7548k)

= O∗(1.7548k)

k∑
x=0

(
n− k
x

)
= O∗(1.7548k)× 2n−k

= O
(

2n × (
1.7548

2
)k
)

ut

This completes the proof of the lemma. ut

Theorem 10. There is an algorithm that, given an instance (G = (V,E), T )
of Subset Feedback Vertex Set, runs in time O(1.9161n) and returns an
optimum solution where n = |V |.

Proof. Let (G,T ) be the given instance of Subset Feedback Vertex Set,
where G is a graph on n vertices and |T | = k. Based on the values of n and k
we run one of the two algorithms described above.

14



If k ≤ 0.32789n, then we run the first algorithm described in Lemma 9. The

running time is upper bounded by O
(

1.2n × ( 5
1.2 )0.32789n

)
= O(1.9161n). Oth-

erwise if k > 0.32789n, then we run the second algorithm described in Lemma 9.

This algorithm runs in time O
(

2n × ( 1.7548
2 )k

)
which is a decreasing function

of k. Substituting k = 0.32789n, we get an upper bound of O(1.9161n) on the
running time in this case as well. ut

We remark that, there are faster FPT [2, 7] and Exact algorithms [12] known
for FVS on undirected graphs. If we use the fastest known deterministic and
randomized algorithms, then we obtain the following theorem.

Theorem 11. Subset Feedback Vertex Set can be solved in O∗(1.8980n)
deterministic time, or in O∗(1.8826n) randomized time.

5.1 Subset Feedback Vertex Set on Chordal Graphs

In this section we give an algorithm for Subset Feedback Vertex Set on
chordal graphs which improves upon the previous best algorithm of Golovach et
al. [15], and is much simpler. The main difference between this algorithm and
the algorithm for Subset Feedback Vertex Set described earlier is that we
use a polynomial time algorithm to solve weighted Feedback Vertex Set
on chordal graphs ([6, 27]), instead of a FPT or an exact algorithm. It is well
known (see also [1]) that chordal graphs are closed under vertex deletions and
edge contractions.

We are now ready to prove the main theorem of this section:

Theorem 12. There is an algorithm that, given an instance (G = (V,E), T )
of Subset Feedback Vertex Set on Chordal Graphs, returns an optimum
solution in O(1.6181n) time, where n = |V |.

Proof. The algorithm is the same as the two algorithms described in Lemma 9
except that we use the polynomial time algorithm for Feedback Vertex Set
on chordal graphs instead of the FPT or the exact exponential algorithm. For
every choice of X, we compute TX and GX in polynomial time. Observe that
the graph GX is obtained from G by vertex deletions and edge contractions,
implying that GX is also a chordal graph. Assign weight 1 to each terminal
vertex and weight k+1 to each non-terminal vertex, and compute in polynomial
time a minimum weight feedback vertex set YX of GX using the result of Corneil
and Fonlupt [6]. We now analyze the running time of our algorithm.

Let S be any optimum solution and let X = S \ T . Observe that |X| ≤
|S| ≤ |T |. The next lemma 10 shows that the number of choices of X is at most
O(1.6181n).

Lemma 10. Let V be a set of n elements and T is a subset of V . Then the
number of distinct sets X ⊆ V such that S∩T = ∅ and |X| ≤ |T | is O(1.6181n).
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Proof. We look at the selection of the set X as a branching algorithm where
in each branch we decide if an element in V \ T is in X or not. The leaves
(or equivalently the root to leaf paths) of the tree of this branching algorithm
correspond to the choices of X. Let x = |X| and b = |V \ (T ∪X). Since x ≤ |T |
and b + x = |V \ T | = n − |T |, we have 2x + b ≤ n. We use µ = n − (2x + b)
as the measure to analyze the branching algorithm. Initially x = 0 and b = 0,
and so µ = n. For an element v ∈ (V \ T ) we have two branches, either v ∈ X
or v /∈ X. In the first branch x increases by 1 and b remains the same which
implies µ decreases by 2. In the second branch b increases by 1 and x remains
the same which implies µ decreases by 1. This corresponds to a branching vector
[21] of (2, 1), and this gives us a branching-tree with O(1.6181n) leaves, which
completes the proof of the lemma. ut

Since after choosing X we do only a polynomial time computation, the run-
ning time of our algorithm is O(1.6181n). ut

We remark that we can use the above method to obtain faster exact algorithm
for Subset Feedback Vertex Set on other graph classes, such as AT-free
graphs [17], which are closed under vertex deletions and edge contractions, and
Feedback Vertex Set is solvable in polynomial time on them.

6 Directed Subset Feedback Vertex Set

In this section we give an exact algorithm for the Directed Subset Feedback
Vertex Set problem running in time O∗(1.9993n). The problem is defined as
follows.

Directed Subset Feedback Vertex Set
Input : A directed graph D = (V,A) and a set of terminal vertices T of size
k.
Question: Find a minimum set of vertices in D which intersects every cycle
in D which contains at least one vertex of T .

Next we observe the following property of directed graphs.

Observation 13 Let D = (V,A) be a directed graph. For any vertex v ∈ V , the
following holds: v belongs to a closed walk in D if and only if v belongs to a cycle
in D.

Lemma 11. Let (D = (V,A), T ) be an instance of Directed Subset Feed-
back Vertex Set. Let S be an optimum solution to this instance and X = S\T ,
Y = S \ X. Furthermore, suppose that every cycle in D \ X that intersects T ,
contains at least two vertices of T . Then Y is a feedback vertex set in the graph
torso(T, V \ X) if and only if X ∪ Y is a subset feedback vertex set for the
instance (D,T ).
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Proof. Suppose X ∪ Y is a solution in D where Y ⊆ T . If Y is not a feedback
vertex set in DX = torso(T, V \X), then there is a cycle CX in DX \ Y . From
CX in DX we can obtain a closed walk C ′ in D in the following manner. We
replace every edge (ti, tj) of CX which is not present in A, with a path Pij from
ti to tj in D \X whose internal vertices lie in V \ (T ∪X). Therefore we get a
closed walk C ′ in D \ (X ∪ Y ) which contains a terminal. By Observation 13,
there is a cycle in D which passes through a terminal in D, which is not covered
by X ∪ Y . This is a contradiction.

Conversely, let Y be a feedback vertex set in DX , but X ∪Y is not a solution
in D. Then there is a cycle C in D \ (X ∪ Y ) and note that this cycle contains
at least two vertices of T . Further assume that C is the shortest such cycle.
Observe that every minimal subpath Pij of C from terminals ti to tj whose
internal vertices lie in V \ T , implies an edge (ti, tj) in DX . Therefore we can
obtain a cycle C ′ in DX from C by replacing the subpath Pij with the edge
(ti, tj), for every pair of terminals ti, tj in C. Observe that this cycle is not
covered by Y . This is a contradiction.

This completes the proof of the lemma. ut

The following observation is immediate since the set T forms a potential
solution.

Observation 14 Let (D,T ) be an instance of Directed Subset Feedback
Vertex Set and let S be an optimum solution for this instance. Then, |S| ≤ |T |.

We are now ready to prove the main theorem of this section.

Theorem 15. There is an algorithm that, given an instance (D = (V,A), T )
of Directed Subset Feedback Vertex Set, runs in time O(1.9993n) and
returns an optimum solution where n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \T ) such
that |X| ≤ k, we first compute (in polynomial time) the set TX which is the set of
terminals t ∈ T such that there is a directed cycle in the graph D[(V \(T ∪X))∪
{t}]. In polynomial time, construct the graph DX = torso(T, V \ (X ∪ TX)).
Then we compute a minimum feedback vertex set YX for DX by using the exact
exponential algorithm by Razgon [25] for Directed Feedback Vertex Set,
which runs in time O(1.9977`) where ` is the number of vertices in the input
graph. In this case we have ` ≤ k. Finally, we return the set X ∪TX ∪ YX which
is a smallest solution over all choices of X. The correctness of the algorithm
follows from Lemma 11.

Running Time. Let T be the running time of our algorithm. Therefore T =∑k
x=0

(
n−k
x

)
O∗(1.9977k). To compute an upper bound on T , we need to examine

the values of n and k. The following claim analyzes the running time of our
algorithm, and completes the proof of the theorem.

Claim 6. T = O(1.9993n).
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Proof. Based on the values taken by n and k we consider the following three
cases,

1. k ≤ n− k
2.1

.

To address this case, we require the following lemma from [22](Lemma 2.1).

Lemma 12. Let 0 < α < 1. Then(
n

αn

)
= O∗

(( 1

αα(1− α)1−α

)n)
.

By Lemma 12 for every 0 ≤ x ≤ k we have(
n− k
x

)
≤
(
n− k
k

)
≤
(
n− k
n−k
2.1

)
= O∗(γn−k), where γ = 1.9978, implying

that T = O∗(1.9978n).

2.
n− k
2.1

< k ≤ n− k.

Note that k ≥ n−k
2.1 which implies k ≥ n

3.1 . And since k ≤ n−k,
∑k
x=0

(
n−k
x

)
≤

2n−k.
Hence T ≤ O∗(1.9977k)2n−k = O

(
2n( 1.9977

2 )k
)
≤ O

(
2n( 1.9977

2 )
n
3.1

)
since

k ≥ n
3.1 .

This simplifies to T ≤ O(1.9993n).
3. k > n− k.

We have k > n− k which gives k > n
2 .

Similar to the previous case, we have T ≤ O∗(1.9977k)2n−k = O
(

2n( 1.9977
2 )k

)
≤

O
(

2n( 1.9977
2 )

n
2

)
= O(1.9989n).

Combining all the above three cases, we see that T ≤ O(1.9993n) for every
0 ≤ k ≤ n. ut

This completes the proof of the theorem. ut

7 Conclusion

We introduced a methodology of obtaining non-trivial exact exponential algo-
rithms for several terminal set problems. We conclude with open problems which
seems to be evasive to our approach. Designing an algorithm faster than O∗(2n)
for Directed Node Multiway Cut remains an interesting question. Another
interesting problem is Subset Odd Cycle Transversal, where the task is to
find a vertex subset of minimum size hitting all cycles of odd length containing
at least one terminal. Again, the problem is trivially solvable in O∗(2n) but no
faster algorithm for this problem is known. We conclude by remarking that an
approach based on our methodology might result in such an algorithm since Odd
Cycle Transversal is solvable in time O∗(1.4661n) [20, 26]. Finally designing
an algorithm for Multicut on both undirected and directed graphs, faster than
the trivial O∗(2n) algorithm, remains an interesting open problem.
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