
Parameterized Algorithms for Boxicity∗

Abhijin Adiga† Rajesh Chitnis‡ Saket Saurabh§

Abstract

In this paper we initiate an algorithmic study of Boxicity, a combina-
torially well studied graph invariant, from the viewpoint of parameterized
algorithms. The boxicity of an arbitrary graph G with the vertex set V (G)
and the edge set E(G), denoted by box(G), is the minimum number of
interval graphs on the same set of vertices such that the intersection of
the edge sets of the interval graphs is E(G). In the Boxicity problem we
are given a graph G together with a positive integer k, and asked whether
the box(G) is at most k. The problem is notoriously hard and it is known
to be NP-complete even to determine whether the boxicity of a graph is
at most two. This rules out any possibility of having an algorithm with
running time |V (G)|O(f(k)), where f is an arbitrary function depending
on k alone. Hence we look for other structural parameters like “vertex
cover number” and “max leaf number” and see their effect on the problem
complexity.

In particular, we give an algorithm that given a vertex cover of size

k finds box(G) in time 2O(2kk2)|V (G)|. We also give a faster additive
1-approximation algorithm for finding box(G) that given a graph with

vertex cover of size k runs in time 2O(k2 log k)|V (G)|. Our other related

results include a factor
(

2 + 2

box(G)

)
-approximation when parameterized

by the feedback vertex set number of the input graph and a FPT algorithm
for computing boxicity on co-bipartite graphs when parameterized by the
vertex cover number of the “associated bipartite graph”. Finally we give
an additive 2-approximation algorithm for Boxicity when parameterized

by the max leaf number with running time 2O(k3 log k)|V (G)|O(1). Our
results are based on structural relationships between boxicity and the
corresponding parameters and could be of independent interest.

∗A preliminary version of this paper was presented in ISAAC 2010
†Department of Computer Science and Automation, Indian Institute of Science, Bangalore–

560012, India. Supported by Infosys Technologies Ltd., Bangalore, under the “Infosys Fellow-
ship Award”. Email: abhijin@csa.iisc.ernet.in
‡Department of Computer Science, University of Maryland at College Park, USA. This

work was done when the author was a summer intern at Institute of Mathematical Sciences,
Chennai–600113, India. Email: rchitnis@cs.umd.edu
§The Institute of Mathematical Sciences, Chennai–600113, India. Email:saket@imsc.res.in

1



1 Introduction

Let F = {S1, S2, . . . , Sn} be a family of sets. An intersection graph associated
with F has F as the vertex set and we add an edge between Si and Sj if and
only if i 6= j and Si ∩ Sj 6= ∅. Any graph can be represented as an intersec-
tion graph, but many important graph families can be described as intersection
graphs of more restricted types of set families, for instance sets derived from
some kind of geometric configuration, like interval graphs, circular arc graphs,
grid-intersection graphs, unit-disk graphs and boxicity k-graphs, to name a few.
These graph classes are not only interesting from a graph theoretic viewpoint
and combinatorial perspective but are also useful in modeling many real life
applications. In this paper our object of interest is boxicity k-graphs, an in-
tersection graph obtained by a family of boxes in the k-dimensional Euclidean
space.

A k-box is a Cartesian product of closed intervals [a1, b1] × [a2, b2] × · · · ×
[ak, bk]. A k-box representation of a graph G is a mapping of the vertices
of G to k-boxes in the k-dimensional Euclidean space such that two vertices
in G are adjacent if and only if their corresponding k-boxes have a non-empty
intersection. The boxicity of a graph G, denoted box(G), is the minimum integer
k such that G has a k-box representation. Boxicity was introduced by Roberts
[31] in 1969 and it finds applications in modeling problems in social sciences and
biology.

There has been significant amount of work done recently on finding lower and
upper bounds on boxicity of different graph classes. Chandran and Sivadasan
[10] showed that box(G) ≤ tree-width (G) + 2. Chandran et al. [8] proved that
box(G) ≤ χ(G2) where, χ(G2) is the chromatic number of G2. In [19] Esperet
proved that box(G) ≤ ∆2(G) + 2, where ∆(G) is the maximum degree of G.
Scheinerman [32] showed that the boxicity of outerplanar graphs is at most 2
while Thomassen [33] proved that the boxicity of planar graphs is at most 3. In
[13], Cozzens and Roberts studied the boxicity of split graphs.

While there has been a lot of work on boxicity from graph theoretic view
point, the problem remains hitherto unexplored in the light of algorithms and
complexity; with exceptions that are few and far between. Cozzens [12] showed
that computing the boxicity of a graph is NP-hard. This was later strengthened
by Yannakakis [34] and finally by Kratochv́ıl [26] who showed that determin-
ing whether boxicity of a graph is at most two itself is NP-complete. Recently
in [1, 2], Adiga et al. showed that there exists no polynomial-time algorithm
to approximate the boxicity of a bipartite graph on n vertices with a factor of
O(n0.5−ε) for any ε > 0, unless NP = ZPP . In [9], Chandran et al. gave a ran-
domized algorithm to construct a box representation of a graph in d(∆ + 2) lnne
dimensions, that runs in O(∆n2 ln2 n) time with high probability. They also
derandomized it to obtain an O(n4∆) time deterministic algorithm. Recently
Chandran, Francis and Mathew [7] used a different derandomization technique
to obtain a O(n2∆2 lnn) time deterministic algorithm. In this paper we study
the Boxicity problem – here we are given a graph G together with a positive
integer k and asked whether the box(G) is at most k – from the parameterized

2



complexity perspective.
Parameterized complexity is basically a two-dimensional generalization of

“P vs. NP” where in addition to the overall input size n, one studies the effects
on computational complexity of a secondary measurement that captures addi-
tional relevant information. This additional information can be, for example, a
structural restriction on the input distribution considered, such as a bound on
the treewidth of an input graph or the size of solution set. Parameterization
can be deployed in many different ways; for general background on the theory
see [15, 23, 30].

For decision problems with input size n, and a parameter k, the two di-
mensional analogue (or generalization) of P, is solvability within a time bound
of O(f(k)nO(1)), where f is a function of k alone, as contrasted with a triv-
ial nk+O(1) algorithm. Problems having such an algorithm are said to be fixed
parameter tractable (FPT), and such algorithms are practical when small pa-
rameters cover practical ranges. The book by Downey and Fellows [15] provides
a good introduction to the topic of parameterized complexity. For recent devel-
opments see the books by Flum and Grohe [23] and Niedermeier [30].

In the framework of parameterized complexity, an important aspect is the
choice of parameter for a problem. Exploring how one parameter affects the
complexity of different parameterized or unparameterized versions of the prob-
lem, often leads to non-trivial combinatorics and better understanding of the
problem. In general there are two kinds of parameterizations. In the first kind
the parameter reflects the value of the objective function in question. The sec-
ond kind, structural parameterizations, measure the structural properties of the
input. A well developed structural parameter is the treewidth of the input
graph. Other well established structural parameters include the vertex cover
number, the size of the minimum vertex cover of graph [21, 22] and the max leaf
number, the maximum number of the leaves possible in a spanning tree of the
input graph [20]. Observe that since determining whether the boxicity of the
input graph is at most 2 is NP-complete we cannot hope to have an algorithm
to test whether box(G) is at most k running in time |V (G)|O(f(k)), where f is
an arbitrary function depending on k alone. This initiates a study of Boxicity
from the structural parameterizations like treewidth, vertex cover number of
the graph and the max leaf number. We parameterize the problem with vertex
cover number and max leaf number of the input graph and obtain the following
results:

1. an FPT algorithm for Boxicity running in time 2O(2kk2)|V (G)| when
parameterized by the vertex cover number;

2. an additive 1-approximation for Boxicity when parameterized by the
vertex cover number running in time 2O(k2 log k)|V (G)|; and

3. an additive 2-approximation for Boxicity when parameterized by the
max leaf number running in time 2O(k3 log k)|V (G)|O(1).

Our other results include a
(

2 + 2

box(G)

)
-approximation when parameterized

3



by the feedback vertex set number of the input graph and an FPT algorithm for
computing boxicity on co-bipartite graphs when parameterized by the vertex
cover number of the “associated bipartite graph”.

Fixed-Parameter and Approximation Algorithms: Most of the approx-
imation algorithms in the literature run in polynomial time. However by com-
bining parameterized complexity and approximation algorithms we can possibly
tackle some problems which are intractable to both the areas. We refer to the
survey of Marx [27] on connections between fixed-parameter algorithms and ap-
proximation algorithms. There are some known negative results [17, 28, 18] in
the area of fixed-parameter approximation which say that some problems are
not approximable in FPT time. Our positive results on fixed-parameter approx-
imation for Boxicity are among the very few known results [29, 14, 24] of such
kind. These results contribute positively to the developing area of parameterized
approximation and we refer to [5, 11, 16] for further details on parameterized
approximation.

All our results are based on structural relationships between boxicity and
the corresponding parameter and they could be of independent interest. It is
natural to ask why we do not consider parameterizing with the treewidth of the
input graph. The reason for this is that, though we are not able to show it, we
believe that Boxicity is NP-hard even on graphs of constant treewidth. We
leave this as an open problem.

2 Preliminaries

In this section we first give the known equivalent representation of boxicity
k-graphs in terms of interval graphs. Then we show how to enumerate these
graphs as they are useful for our algorithm. Finally we set up notations used
throughout the paper.

2.1 Interval graphs and box representations

2.1.1 Equivalent characterization:

It is easy to see that a graph has boxicity at most 1 if and only if it is an interval
graph, that is, each vertex of the graph can be associated with a closed interval
on the real line such that two intervals intersect if and only if the corresponding
vertices are adjacent. By definition, boxicity of a complete graph is 0. Let G be
any graph and Gi, 1 ≤ i ≤ k be graphs on the same vertex set as G such that
E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk). Then we say that G is the intersection

of Gi s for 1 ≤ i ≤ k and denote it as G =
⋂k
i=1Gi. Boxicity can be stated in

terms of intersection of interval graphs as follows:

Lemma 1. Roberts [31]: The boxicity of a non-complete graph G is the min-
imum positive integer b such that G can be represented as the intersection of b

4



interval graphs.

Definition 1. Box representation: We say that B = {I1, I2, . . . , Ib} is a b-box

representation of graph G if G =
⋂b
i=1 Ii, where I1, I2, . . . Ib are interval graphs

with fixed interval representations, i.e., B can be considered as a collection of b
interval representations.

2.1.2 Distinguishing interval representation of an interval graph:

Let I be an interval graph. Let fI be an interval representation for I, that is, it is
a mapping from the vertex set to closed intervals on the real line such that for any
two vertices u and v, {u, v} ∈ E(I) if and only if fI(u)∩ fI(v) 6= ∅. Let l(u, fI)
and r(u, fI) denote the left and right end points of the interval corresponding
to the vertex u respectively. In some sections we will never consider more than
one interval representation for an interval graph, in which case we will simplify
the notations to l(u, I) and r(u, I). Further, when there is no ambiguity about
the graph under consideration and its interval representation, we simply denote
the left and right end points as l(u) and r(u) respectively. For any interval
graph there exists an interval representation with all end points distinct. Such
a representation is called a distinguishing interval representation. It is an easy
exercise to derive such a distinguishing interval representation starting from an
arbitrary interval representation of the graph.

2.2 Enumeration of b-box representations

Consider an interval graph I on n vertices. We can assume that the distin-
guishing interval representation fI is a bijective map from the end points of the
vertices to [2n], that is, every end point is mapped to a distinct integer between
1 and 2n. Therefore, every distinguishing interval representation can be consid-
ered as a permutation of the 2n end points. This immediately leads to a bound
of 2n! = 2O(n logn) on the number of interval graphs possible on n vertices.

Let G be a graph on n vertices with boxicity at most b. A brute force enumer-

ation of all distinct b-box representations of G will require time
(
2O(n log n)

b

)
bn2 =

2O(bn logn)bn2. The term bn2 is required to check the validity of the box repre-
sentation. This results in the following proposition.

Proposition 1 ([4]). There are at most 2O(nb logn) distinct b-box representations
of a graph G on n vertices and all these can be enumerated in time 2O(bn logn)bn2.

2.3 Vertex cover and boxicity

Let G be a graph. A set U ⊂ V (G) is a vertex cover of G if every edge of G is
incident with a vertex in U . We denote by MVC (G) the minimum cardinality
of a vertex cover in G. It is a well-known fact that V \ U is an independent
set and if |U | = MVC (G), then V \ U is a maximum independent set. In [6]

5



Chandran, Das and Shah proved that

box(G) ≤
⌊

MVC (G)

2

⌋
+ 1. (1)

2.4 Some definitions and notations

Let [p] denote {1, 2, . . . , p} where p is a positive integer. For any graph G, let
V (G) and E(G) denote its vertex set and edge set respectively. For U ⊆ V , let
G[U ] be the subgraph of G induced by U . We use n to denote the number of
vertices in the input graph. By N(u) we denote (open) neighborhood of u that
is the set of all vertices adjacent to u and by N [u], the set N(u)∪{u}. Similarly,
for a subset D ⊆ V , we define N [D] =

⋃
v∈DN [v] and N(D) = N [D] \D. The

vertex cover number of a graph is the cardinality of the minimum sized subset
of vertices of the graph that contains at least one end-point of every edge of
the input graph. The max leaf number is the maximum number of the leaves
possible in a spanning tree of the input graph. If BG = {I1, I2, . . . , Ik} is a
k-box representation, then we say that BG has width k. A box representation
of G of width box(G) is called as an optimal box-representation.

Property 1. Helly property of intervals: Suppose A1, A2, . . . , Ak is a
finite set of intervals on the real line with pairwise non-empty intersection.
Then, there exists a common point of intersection for all the intervals, that
is,
⋂k
i=1Ai 6= ∅.

3 Boxicity parameterized by vertex cover

In this section we show that Boxicity parameterized by the vertex cover num-
ber is fixed parameter tractable. This implies that given a graph G on n vertices
we can find box(G) by finding the minimum 1 ≤ k ≤ n for which there exists a
k-box representation for G.

We start with a few definitions. Let G be a graph with the vertex set
V (G). Let U ⊆ V (G) be a vertex cover of G size k. A k-vertex cover can be
computed in time O(2k + kn) (See [30] for references). Let S = V (G) \ U be
the independent set. We partition the vertices in the independent set S based
on their neighborhoods in U . For every A ⊆ U , let SA = {u ∈ S | N(u) = A}.
Observe that in this way we can partition the vertices of S into at most 2k parts
– one for every subset of U .

Pruning: For A ⊆ U , if |SA| ≥ 1 then, we retain an arbitrary vertex in SA,
say v(A), which we call the representative vertex and remove other vertices of
SA from G. We call this step as pruning of the parts and denote the resulting
graph obtained from this process by G′ and let S′ = V (G′)\U . The pruning step
requires time O(2kn). Notice that every vertex in S′ has a distinct neighborhood
of U in G′. Throughout this section, G and G′ represent the graphs defined
above. Now we have the following definition:

6



Definition 2. Let BG′ = {I ′1, I ′2, . . . , I ′`} be a box-representation of G′ of width
`. We say that we can extend BG′ to a representation, say BG, of G of the same
width if we can add intervals for vertices in V (G)\U while keeping the intervals
of vertices from U as they are in each of the interval graphs I ′1, I

′
2, . . . , I

′
`, and

get an `-box representation for G.

Remark 1. Observe that according to Definition 2, while extending the given
box-representation for G′, the only intervals that we are not allowed to change
are that of the vertex set U . The intervals corresponding to S′ = V (G′) \U are
allowed to be replaced/modified.

Now we characterize a relationship between box-representations of G′ and
G which is used crucially in the correctness of our algorithms later.

Lemma 2. Let BG′ = {I ′1, I ′2, . . . , I ′`} be a box-representation of G′. Then BG′

can be extended to a representation of G, say BG = {I ′′1 , I ′′2 , . . . , I ′′` } if and only
if ∀A ⊆ U such that |SA| > 1 there exists a j ∈ [`] such that A forms a clique
in I ′j.

Proof. First we prove the forward direction. Suppose that BG′ = {I ′1, I ′2, . . . , I ′`}
can be extended to BG = {I ′′1 , I ′′2 , . . . , I ′′` }. Recall that the intervals correspond-
ing to the vertices from U remain unchanged by the definition. Let A ⊆ U
such that |SA| > 1 and let a1, a2 be two arbitrary vertices in SA. Since
{a1, a2} /∈ E(G) there exists j ∈ [`] such that intervals of a1 and a2 do not
intersect in I ′′j . Without loss of generality, let r(a1, I

′′
j ) < l(a2, I

′′
j ). Then, for

every vertex in A, its interval in I ′′j contains the interval [r(a1, I
′′
j ), l(a2, I

′′
j )] as

they need to intersect intervals corresponding to both a1 and a2. Therefore, A
forms a clique in I ′′j . Hence A forms clique in I ′j also as the intervals of vertices
from U remain unchanged while extending BG′ to BG.

Next we show the reverse direction of the lemma. Without loss of generality,
we can assume that each interval graph representation in BG′ is a distinguishing
interval representation (see Section 2.1.2). Let A ⊆ U such that |SA| > 1. We
know that A forms a clique in some I ′j such that j ∈ [`]. By Property 1,
the intervals in I ′j of vertices of A have a common intersection. Since I ′j is a
distinguishing interval representation, this common intersection is not a point
but rather a non-trivial interval, say J . Let the interval corresponding to v(A)
in I ′j be Jv. Now we assign all vertices from SA including v(A) to distinct point
intervals in the common interval J ∩ Jv. Notice that we can do this because
J∩Jv is not a point interval. This follows from the fact that all the intervals have
pairwise distinct end-points. In all other interval graphs from BG′ , we assign to
all members of SA the same interval as that of the representative element v(A)
of SA. We do this for every A ⊆ U for which |SA| > 1. From the description
above it is evident that the new interval graphs we get by above procedure is
an `-box representation for G. This concludes the proof of the lemma.

Lemma 2 has the following important algorithmic consequence. This can be
proved using the fact there are at most 2k subsets of U such that |SA| > 1.

7



Lemma 3. Given a box representation for G′ of width `, in time O(2kk2`) we
can determine whether it can be extended to a box representation for G and if
so we can find an `-box representation in time O(2kk2`n).

Proof. Let BG′ = {I ′1, I ′2, . . . , I ′`} be a box-representation for G′. Lemma 2
provides a simple criteria to check whether BG′ can be extended to an `-box
representation for G. The only thing we need to check is whether for every
A ⊆ U with |SA| > 1 there is at least one interval graph, say I ′t, in BG′ such
that the vertices corresponding to A forms a clique in I ′t. This can be done
in O(|A|2`) = O(k2`) time. Note that the list of As such that |SA| > 1 can
be assumed to be available from the pruning step. Since there are at most 2k

such subsets of U the total time required is O(2kk2`). We can find the explicit
representation in the stated time using the construction given in the second half
of the proof of Lemma 2.

Now we present a lemma which ensures an `-box representation for G′ which
can be extended to an `-box representation for G.

Lemma 4. Let ` be the minimum integer such that there exists an `-box rep-
resentation of G′ that can be extended to an `-box representation of G. Then
box(G) = `.

Proof. Let β = box(G). From the statement of the lemma we assume without
loss of generality that β ≤ `. Now consider a β-box-representation of G and
look at its induced representation on vertices of G′. Clearly this induced rep-
resentation on G′ can be extended to a representation of G. In fact, it can be
extended to the β-box-representation of G we started with. Thus β ≥ ` and
hence box(G) = β = `.

Remark 2. Observe that the proof of Lemma 4 also implies that there exists a
box representation for G′ which can be extended to a box representation for G
of the same width.

Observe that Lemmata 3 and 4 together with the above remark gives us an
algorithm to find box(G). From [6] it is known that if G has vertex cover at
most k, then, box(G) ≤ bk/2c + 1. Hence we can enumerate all possible box-
representation of G′, where |V (G′)| ≤ 2k +k, of width at most bk/2c+ 1, which

by Proposition 1 takes time at most 2O(2kk2), and check by Lemma 3 whether
it can be extended to a box representation for G in time O(2kk2). All this can

be done in time 2O(2kk2)n. This gives the following theorem.

Theorem 1. For graphs on n vertices with vertex cover bounded by k, the

boxicity and an optimal box-representation can be computed in time 2O(2kk2)n.

The running time obtained in Theorem 1 to compute the boxicity of a graph
exactly is high. However if we are willing to accept an additive error of 1, that
is, if we want an additive one approximation algorithm to compute boxicity of
a graph parameterized by the vertex cover number then we can do much faster.
We have the following result.

8



Theorem 2. Let G be a graph with vertex cover number at most k, then in
time 2O(k2 log k)n we can find a w-box-representation of G such that box(G) ≤
w ≤ box(G) + 1.

The next subsection is devoted to the proof of this theorem.

3.1 Proof of Theorem 2

Let G′ be the graph introduced in the pruning step and U be a vertex cover
of G. Now we prove a lemma which given a box-representation of G′[U ] of
width w gives us an efficient algorithm to check whether it can be extended to
a w+ 1-box representation of G′. Towards this we need a notion of locally valid
w-box-representation of G′ and locally valid extensions of w-box representation.

Definition 3. Let BG′ = {I1, I2, . . . , Iw} be a set of interval graphs on vertex set
V (G′). We call it a locally valid box representation if the following conditions
are satisfied: (a) E(G′) ⊆

⋂
j∈[w]E(Ij); (b) for every pair of non-adjacent

vertices u and v in V (G′) such that at least one of them belongs to U then there
exists an interval graph Ij in BG′ such that the intervals associated to u and v
do not intersect.

Definition 4. Let BU = {I1, I2, . . . , It} be a box-representation of G′[U ] of
width t. We say that we can extend BU to a locally valid box-representation,
say BG′ , of G′ if we can add intervals for vertices in V (G′) \ U while keep-
ing the intervals of vertices from U as they are in each of the interval graphs
I1, I2, . . . , It, and get a locally valid box representation for G′ of width at most
t.

Remark 3. Observe that in locally valid box representation of G′ all non ad-
jacencies have been taken care of except for those occurring in the independent
set S′.

Lemma 5. Given a representation of G′[U ] of width w, we can check in time
O((4k)w4kw) whether it can be extended to some locally valid box representation
of G′ of width w.

Proof. Let BU = {I1, I2, . . . , Iw} be a representation of G′[U ]. Consider a dis-
tinguishing interval representation for each interval graph in BU . Furthermore
we will also assume that they have integer end-points (see Section 2.1.2). Let
A ⊆ U such that |SA| > 0. Consider v(A), the representative element of SA and
Ij ∈ BU . If A does not induce a clique in Ij , then we assign the following interval
for v(A): l(v(A), Ij) = minx∈A r(x, Ij) and r(v(A), Ij) = maxx∈A l(x, Ij), that
is, we assign the interval whose left end-point corresponds to the leftmost right
end-point of a neighbor and the right end-point corresponds to the rightmost
left end-point of a neighbor. This is an optimal assignment as it happens to be
the shortest possible interval that can be assigned to v(A) in Ij , as the interval
corresponding to v(A) must intersect intervals corresponding to the vertices in
A. We consider every A such that A is not a clique in Ij and perform the above

9



operation. Let the resulting interval graph be denoted by I∗j . We apply this
procedure to every interval graph in BU . Let the resulting set of interval graphs
be denoted by B∗U = {I∗1 , I∗2 , . . . , I∗w}. The following observation is evident from
the procedure described above.

Observation 1. We do not create new end-points in any I∗ ∈ B∗U .

Now we give a procedure to assign interval for v(A) when A induces a clique
in I ∈ BU .

Clique interval: We denote by E(A) the set of points on the real line which
are contained in the intervals corresponding to all the vertices of A. By Prop-
erty 1, E(A) is an interval on the real line. Therefore, we call E(A) the A-clique
interval with respect to the interval representation of I or I∗. Since we consider
only one interval representation for any interval graph, E(A) will be simply re-
ferred to as “A-clique interval of I∗”. It is to be observed that a point in E(A)
can be contained in intervals corresponding to vertices not in A.

Exclusive super-clique and C(A, I∗): For every point a ∈ E(A), let A′ be
the set of all vertices whose intervals contain a. Clearly, A′ is a clique. We call
such a clique an exclusive super-clique of A in I∗. We use the term “exclusive”
to indicate the fact that there exists a point in the interval representation which
is contained in only the intervals corresponding to the vertices of A′. Note that
A itself can be an exclusive super-clique. Let C(A, I∗) be the set of all exclusive
super-cliques of A in I∗.

Observation 2. Every point in the A-clique interval belongs to some A′ ∈
C(A, I∗) and every A′ ∈ C(A, I∗) contains A.

Recall that v(A) ∈ S is the representative vertex of A in G′: the vertex
belonging to SA which is retained during the pruning operation. Since v(A) is
adjacent to only the vertices of A in G′, an optimal interval assignment for v(A)
is a point interval somewhere in the A-clique interval of I∗. Let Q(I∗) ⊆ S′ be
the set of representative vertices whose neighborhood form a clique in I∗, that
is, Q(I∗) = {v(A)|A ⊆ U and A is a clique in I∗}. Next we characterize the
possible placement of vertices in the interval graphs when their neighborhood
form a clique.

Claim 1. Assigning a point interval for v(A) among vertices in Q(I∗) is equiv-
alent to just choosing an A′ from C(A, I∗).

Proof. Suppose we assign a point interval to v(A). Clearly it has to be in the A-
clique interval and from Observation 2, it follows that there exists an exclusive
super-clique A′ ∈ C(A, I∗) such that the point belongs to an interval in E(A′).
Therefore fixing a point interval fixes an A′ from C(A, I∗).

Now suppose we pick an A′ ∈ C(A, I∗). Note that there can exist several
points in E(A) corresponding to the exclusive super-clique A′. Let XA′ be the
set of all these points. Assigning any point from XA′ as the point interval for

10



v(A) will imply that v(A) is adjacent to a vertex u ∈ V (I∗) if and only if
u ∈ A′. This means choosing any point from XA′ will have the same effect on
the adjacencies between v(A) and U . Therefore, choosing A′ from C(A, I∗) is
equivalent to fixing a point interval for v(A).

We can bound the time complexity of the algorithm by showing the following.

Claim 2. For every A ⊆ U and I∗ ∈ B∗U such that A forms a clique in I∗ we
have that |C(A, I∗)| ≤ 4k.

Proof. We call a clique X an exclusive clique in I∗ if there exists a point in
the interval representation of I∗ which belongs exclusively to the intervals cor-
responding to all the vertices of X. Clearly, an exclusive super-clique of A is
also an exclusive clique. We prove the claim by showing that the total number
of exclusive cliques in I∗ is less than 4k. First we will show that the number of
exclusive cliques is bounded by a function of the number of distinct end points
in the interval representation of I∗. Let p1 < p2 < · · · < pt be the distinct
end points in the interval representation. Consider the open interval (pi, pi+1)
for some i ∈ [t − 1]. Note that all the points in this interval correspond to
exactly one clique as there are no intervals starting or ending in this region.
Now we consider the distinct end points pi, i ∈ [t]. Note that a pi may corre-
spond to an exclusive clique different from the exclusive cliques corresponding
to (pi−1, pi) and (pi, pi+1). This will happen if there exist two vertices u, v, such
that r(u, I∗) = l(v, I∗). Hence, the total number of exclusive cliques in I∗ is at
most 2t− 1.

Now we show that t ≤ 2k. Note that we started with a distinguishing interval
representation for I which implies it had 2k distinct end points. The construc-
tion of I∗ did not lead to additional end points (Observation 1). Therefore
t = 2k and hence, |C(A, I∗)| < 4k.

Now we consider all I∗j ∈ B∗U such that A is a clique. Let CwA = C(A, I∗1 )×
C(A, I∗2 ) × · · · × C(A, I∗w). If A does not form a clique in some Ij then the
corresponding C(A, I∗j ) is set to ∅. We choose a candidate from CwA . We
are required to verify if the resulting interval assignments for v(A) will lead
to a “valid” box representation. By validity we mean the following: look at
the intervals corresponding to v(A) in I∗j , j ∈ [w], and let NU (v(A), I∗j ) be
its set of neighbors in I∗j which belong to U . Then A =

⋂
j∈[w]NU (v(A), I∗j ).

Observe that we can check whether a given assignment is valid in O(2kw) time
since |V (G′)| ≤ 2k + k. If not, we consider another candidate from CwA and
continue. This procedure is repeated until we obtain a valid box representation
with respect to v(A). If all the candidates of CwA are exhausted, then we discard
the box representation BU . Observe that the given representation of G′[U ] can
be extended to some locally valid box representation of G′ of width w if and
only if B∗U is valid with respect to every vertex in S′.

From Claim 2, it follows that |C(A, I∗j )| ≤ 4k. Therefore, for each set A ⊆ U ,

|CwA | ≤ (4k)w and there are at most 2k such sets. Thus the total time to check

11



whether B∗U is valid with respect to every vertex in S′ takes O(2k(4k)w2kw)
time. This concludes the proof.

Now we are ready to prove Theorem 2.
Let U be the vertex cover and G′ be the graph described above. We know

by [6] that box(G) ≤ bk/2c+ 1. Now enumerate all the box representations BU
of width at most 1 ≤ w ≤ bk/2c+ 1 of G′[U ]. First check if for all A ⊆ U such
that |SA| > 1 there is at least one interval graph I in BU such that A forms a
clique in I. We call such BU good. Now using Lemma 5 check whether BU can
be extended to a locally valid representation of G′. Let w be the least integer
such that BU is good and can be extended to a locally valid representation of G′.
Now we add the following interval graph I: for every vertex w ∈ S′ we associate
a disjoint interval, say [l(w), r(w)] and for every vertex v ∈ U we assign the
following interval l(v) = minw∈S′ l(w) and r(v) = maxw∈S′ r(w). Clearly the
introduction of I ensures that the non-adjacencies among the vertices of S′ has
been taken care of. This implies that BU∪I is a (w+1)-box representation of G′.
Since BU is good, BU∪I is also good and hence by Lemma 2 we have that BU∪I
can be extended to a (w + 1)-box representation of G. The one question that
remains unanswered is how do we know that we will always enumerate a box-
representation ofG′[U ] that can be extended to a locally valid box representation
of G′. To see this it is enough to observe that given a box-w-representation of
G, its induced representation on U is also a box-w-representation of G′[U ] and
clearly it can be extended to a locally valid box representation of G′ (in fact to a
box representation of G′). The time taken for our algorithm using Proposition 1
is bounded by

O((k/2 + 1)× 2O(k2 log k) × 2kk × (4k)k4kk × 2kk3n) = 2O(k2 log k)n.

This concludes the proof of the theorem.

3.2 On the Boxicity of Co-bipartite Graphs

In this section we give an algorithm to find the boxicity of co-bipartite graphs.
A graph is called co-bipartite if it is the complement of a bipartite graph. In
[34], Yannakakis showed that it is NP-complete to determine if the boxicity
of a co-bipartite graph is ≥ 3. Recently, Adiga, Bhowmick and Chandran [1]
showed that it is hard to approximate the boxicity of a bipartite graph within√
n factor, where n is the order of the graph. A similar result can be derived

for co-bipartite graphs too.
Observe that a co-bipartite graph on n vertices has a minimum vertex cover

of size n − 2. Therefore, Theorem 1 or parameterization by the vertex cover
number of the input graph is not interesting for the class of co-bipartite graphs.
However, we show that given a co-bipartite graph G, finding box(G) is fixed
parameter tractable when parameterized by the vertex cover of the following
bipartite graph associated with it.

12



Definition 5. Let H be an XY co-bipartite graph, that is, V (H) is partitioned
into cliques X and Y . The associated bipartite graph of H, denoted by H∗ is
the graph obtained by making the sets X and Y independent sets, but keeping
the set of edges between vertices of X and Y identical to that of H, that is,
∀u ∈ X, v ∈ Y , {u, v} ∈ E(H∗) if and only if {u, v} ∈ E(H).

We also need the following notion:

Definition 6 ([1]). Canonical interval representation of a co-bipartite
interval graph: Let I be an XY co-bipartite interval graph. A canonical
interval representation of I satisfies: ∀u ∈ X, l(u) = l and ∀u ∈ Y , r(u) = r,
where the points l and r are the leftmost and rightmost points respectively of the
interval representation. That is, every interval associated with a vertex in X
has the same left end-point and every interval associated with a vertex in Y has
the same right end-point.

It is easy to verify that such a representation exists for every co-bipartite
interval graph and can be derived from an arbitrary interval representation of
this graph (see [1] for more details). We need the following relation between
box(H∗) and box(H).

Lemma 6. (Adiga et al. [1]) Let H be an XY co-bipartite graph and H∗

its associated bipartite graph. If H is a non-interval graph, then box(H∗) ≤
box(H) ≤ 2box(H∗). If H is an interval graph, then box(H∗) ≤ 2.

Our main theorem of this section is as follows.

Theorem 3. Let G be a co-bipartite graph on n vertices and G∗ be its associated
bipartite graph. If the vertex cover of G∗ is bounded by k, then the box(G) and

an optimal box representation can be computed in time 2O(k2 log k)n2.

Proof. Let G be an XY co-bipartite graph and let U be a vertex cover of G∗

such that |U | ≤ k. We first check if G is an interval graph. This can be
accomplished in linear time [3] and if G is an interval graph then box(G) = 1
and we can find an interval representation of G in polynomial time. Otherwise,
by (1) we have box(G∗) ≤

⌊
k
2

⌋
+ 1 and combining this with Lemma 6 we have

that box(G) ≤ 2box(G*) ≤ (k + 2). Observe that since G is a co-bipartite
graph, the set of interval graphs such that their intersection is G consists of
only co-bipartite interval graphs and therefore each of them can be assumed to
have a canonical interval representation. We refer to [1] for more details. A
box representation of a co-bipartite graph such that all the interval graphs are
given with canonical representation is called canonical box representation. Now
we have the following claim.

Claim 3. Let BU = {I1, I2, . . . , Iw} be a canonical w-box representation of
G[U ]. Then in time O(n2w2k) we can decide whether we can extend this to a
canonical representation of G. Here extension means obtaining a canonical box
representation BG = {I ′1, I ′2, . . . , I ′w} of G by assigning intervals to the vertices
of V (G) \U in each of the interval graphs in BU and not changing the intervals
of the vertices in U .

13



Proof. We assume that all the end points are mapped to integers. Since BU =
{I1, I2, . . . , Iw} is a canonical w-box representation of G[U ] we have that for
all Ij ∈ BU , the left end point of vertices in U ∩ X is same and the right end
point of vertices in U ∩ Y is same. Let these be lj and rj respectively. We try
to extend BU to a canonical box representation of G in the following manner.
Let S = V (G) \ U and observe that since U is a vertex cover of G∗ we have
that G∗[S] is an independent set. From the definition of G∗, it is clear that
no vertex in S ∩ X is adjacent to any vertex in S ∩ Y in G. Now we define
the intervals associated with vertices in S. Fix some Ij ∈ BU . If u ∈ S ∩ X,
then we set l(u, Ij) = lj and r(u, Ij) = max

z∈N(u)∩Y
l(z, Ij). Similarly if u ∈ S ∩ Y ,

then r(u, Ij) = rj and l(u, Ij) = min
z∈N(u)∩X

r(z, Ij). Observe that if u ∈ S ∩ X

(u ∈ S ∩ Y respectively), then the optimal placement of its right (left) end
point is essentially dependent on the left (right) end points of just the vertices
in U ∩ Y (U ∩ X) and not all of Y (X resp.). Given this observation, it is
clear that we have assigned the shortest possible interval while adhering to the
canonical structure of the interval representation.

For each u ∈ S, we need O(k) time to find its interval on Ij . So we need
total O((n−k)kw) = O(nkw) time to build the new proposed representation for
G. After assigning intervals to all the vertices in S we need to validate the box
representation. This requires time O(n2w) (see Section 2.2). Thus, the total
time required to check if BU can be extended to a box representation of G is
O(nkw + n2w) = O(n2kw).

Claim 3 gives us an algorithm to find box(G) and an optimal box represen-
tation of G. We enumerate all canonical box representations of width at most
k + 2 of G[U ]. After that using Claim 3 we can test in time O(n3k3) whether
we can extend the enumerated canonical box representation to a canonical box
representation of G. We return the minimum w between 1 and k + 2 for which
the Claim 3 returns a canonical w-box representation for G. The one question
that remains unanswered is how do we know that we will always enumerate a
canonical box-representation of G[U ] of width box(G) that can be extended to
a canonical box representation of G. To see this it is enough to observe that
given a canonical w-box representation of G, its induced representation on U is
a canonical w-box representation of G[U ]. The time taken for our algorithm is
bounded by

O((k + 2)2O(k2 log k)n2w2k) = 2O(k2 log k)n2.

This concludes the proof of the theorem.

3.3 Boxicity Parameterized by Feedback Vertex Set Num-
ber

In this section we obtain a factor
(

2 + 2

box(G)

)
-approximation algorithm for

finding the boxicity of a graph G running in time f(k)|V (G)|O(1) where k is
the size of the minimum feedback vertex set of the input graph G. A feedback

14



vertex set of a graph G is a subset U ⊆ V (G) such that G[V (G) \U ] is a forest.
More precisely we have the following.

Theorem 4. Let G be a graph with the minimum feedback vertex set size

bounded by k. Then, there is a factor
(

2 + 2

box(G)

)
-approximation algorithm to

compute boxicity of G running in time f(k)|V (G)|O(1), where f(k) is the expo-
nential part of the running time of the algorithm to compute boxicity of a given
graph having vertex cover of size at most k.

Proof. Let U ⊆ V (G) be a feedback vertex set of G. By definition, S = V (G)\U
induces a forest in G and therefore, G[S] is a bipartite graph with partite sets
say X and Y . Let G1 = G[U ∪X] and G2 = G[U ∪ Y ]. Clearly U is a vertex
cover of G1 and G2. Using Theorem 1, we obtain a box representation B1 =
{I11, I12, . . . , I1r} for G1 and B2 = {I21, I22, . . . , I2s} for G2 where box(G1) = r
and box(G2) = s. It is a well-known fact that the boxicity of a forest is at most
2 and can be constructed in polynomial time. Let B3 = {I31, I32} be a box
representation for G[S].

For each I1j ∈ B1, we construct I ′1j by introducing vertices of Y as uni-
versal vertices, that is, to every vertex v ∈ Y we assign the following interval
l(v, I1,j) = minw∈V (G1) l(w, I1,j) and r(v, I1,j) = maxw∈V (G1) r(w, I1,j). Simi-
larly, for each I2j ∈ B2, we construct I ′2j by introducing vertices ofX as universal
vertices. Finally, for each I3j ∈ B3, we construct I ′3j by introducing vertices in U
as universal vertices. We call the new box representations B′1, B

′
2 and B′3 respec-

tively. It is easy to verify that the intersection of edge sets of interval graphs in
B′1, B

′
2 and B′3 is E(G). This implies that the box(G) ≤ box(G1)+box(G2)+2.

Since, box(G1),box(G2) ≤ box(G), we have a box representation of G compris-
ing of at most 2box(G) + 2 interval graphs. This gives us the desired approxi-
mation factor of the algorithm.

4 Boxicity Parameterized by Max Leaf Number

In this section we obtain an additive 2-approximation algorithm for finding the
boxicity of a connected graph G running in time f(k)|V (G)|O(1) where k is the
number of the maximum possible leaves in any spanning tree of the input graph
G. The number of the maximum possible leaves in any spanning tree of the
input graph G is called the max-leaf number of G.

Suppose graph G has n vertices and max-leaf number k. Consider the fol-
lowing partitioning of the vertex set: (1) V=1: vertices of degree 1; (2) V=2:
vertices of degree 2 and (3) V>2: degree at least 3. Let H = G[N [V>2 ∪ V=1]],
i.e., the graph induced on the vertex set V>2 ∪ V=1 and its neighbor set. Here,
we assume that G has at least one vertex of degree ≥ 3. Otherwise, G is a cycle
or a path, whose boxicity is trivial to compute. Our algorithm is based on the
following lemma.

15



Lemma 7. If G and H are as defined above, then box(H) ≤ box(G) ≤ box(H)+
2. Furthermore given a b-box-representation of H it can be made into (b + 2)-
box-representation of G in polynomial time.

Proof. Since H is an induced subgraph of G, box(H) ≤ box(G). Now we will
give a construction that shows that box(G) ≤ box(H) + 2. Let box(H) = b and
B = {I1, I2, . . . , Ib} be a box representation of H.

Definition 7. Excluded path: An excluded path in a graph is a path in
which the interior vertices have degree 2. In other words, each interior vertex
is adjacent to only its two neighbors of the path in the graph.

Claim 4. G[V (G) \ V (H)] is a collection of paths which happen to be excluded
paths in G.

Proof. Since V (G) \ V (H) ⊆ V=2, the maximum degree of G[V (G) \ V (H)] is
2, which in turn implies that it is a collection of cycles and paths. However, if
there is a cycle, then every vertex participating in this cycle would be of degree
2 in G and hence form a separate component in G, contradicting the fact that
G is connected and is not a cycle.

Since each vertex belongs to V=2, every interior vertex of the paths is adja-
cent to only its two neighbors of the path in the G and therefore, each path is
an excluded path in G.

Claim 5. The end points of every excluded path P ∈ G[V (G) \ V (H)] are
adjacent to two distinct vertices of V=2 which are neighbors of some vertices in
V>2 ∪ V=1.

Proof. The proof is by contradiction. If an end point of path P was not adjacent
to a vertex in V=2, then, it implies that either it is adjacent to a vertex in
V>2 ∪ V=1 or it is not adjacent to any other vertex. In the latter case, it would
imply that the end point belongs to V=1. In either case, this would imply that
the end point belongs to N [V>2 ∪ V=1] = V (H), a contradiction.

If the end points of the path are adjacent to the same vertex in V=2, then
it would imply that the path and the vertex together would induce an isolated
cycle in G, a contradiction to the fact that G is connected and is not a cycle.

Construction of the box representation B′ = {I ′1, I ′2, · · · , I ′b+1, I
′
b+2} for

G: We order the paths of G[V (G) \ (V>2 ∪ V=1)]. Let them be denoted as
P1, P2, . . . , Pm where m is the total number of paths. Let P ′i = xiPiyi, where
xi, yi ∈ V=2 ∩ N(V>2 ∪ V=1) (see Claim 5). We note that xi and yi are not
adjacent ∀i ∈ [m]. This is because both xi and yi have degree 2 in G and have
one neighbor each in the path Pi and one neighbor in V>2 ∪ V=1.

For each I ∈ B, we construct I ′ by introducing the vertices in G \ H as
follows: If xi and yi are not adjacent in I, then, without loss of generality we
assume that r(xi, Ia) < l(yi, Ia). Suppose P ′i = xivi1vi2 · · · vip(i)yi, then we

16



consider p(i)+1 distinct points r(x, Ia) = c0 < c1 < c2 < · · · < cp(i)−1 < cp(i) =
l(yi, Ia). We assign to vij the interval [cj−1, cj ].

If xi and yi are adjacent in I, then we assign the same point interval within
the region of intersection of the intervals of xi and yi to all vertices vij . We also
construct two extra graphs I ′b+1 and I ′b+2 as follows:
I′b+1: All vertices in V>2 ∪ V=1 are assigned to the interval [m + 1,m + 2].
Consider the path P ′i . The vertices xi and yi are assigned [i,m + 2] and other
vertices in P ′i are assigned the point interval [i+ 1

2 , i+ 1
2 ].

I′b+2: All vertices in V>2 ∪ V=1 are assigned to the interval [−1, 0]. For a path
Pi, the vertices xi and yi are assigned [−1, i] and all other vertices in P ′i are
assigned the point interval [i− 1

2 , i−
1
2 ].

Proof of G =
⋂b+2
a=1 I

′
a: Note that ∀j ∈ [b], the interval of every vertex from

V (H) in I ′j is same as the interval in Ij and V (H) forms a clique in both I ′b+1

and I ′b+2. Thus
⋂b+2
j=1 I

′
j restricted to V (H) is exactly H.

Observe that the way we have constructed I ′j for j ∈ [b], we have introduced
intervals for every vertex in P ′i in I ′j for i ∈ [m]. Since xi and yi are not adjacent
in H there exists j ∈ [b] such that intervals of xi and yi do not intersect in Ij .
Again, without loss of generality let r(xi, Ij) < l(yi, Ij). Then by our procedure
we would have packed intervals of the interior vertices of P ′i in between r(xi, Ij)
and l(yi, Ij) in the interval graph I ′j . Thus, in I ′j , G[V (P ′i )] = P ′i . On the other
hand if xi and yi intersect in some Il then V (P ′i ) forms a clique in I ′l . Also

V (P ′i ) forms a clique in I ′b+1 and I ′b+2. Therefore, ∀i ∈ [m],
⋂b+2
a=1 I

′
a restricted

to V (P ′i ) is exactly P ′i .
We now need to only show that vertices of an excluded path Pi are separated

from other excluded paths and vertices in V (H)\{xi, yi}. Clearly vertices of Pi
are separated from the interior vertices of other excluded paths Pj and V>2∪V=1

in both I ′b+1 and I ′b+2. Suppose v ∈ Pi and xj (or yj) is an end vertex of P ′j , j 6= i.
If i < j, then v and xj (or yj) are separated in I ′b+1, else, they are separated in
I ′b+2. By the same argument it follows that xi (and yi) are separated from the
vertices of Pj in either I ′b+1 or I ′b+2.

Hence, we have proved that G =
⋂b+2
a=1 I

′
a. Thus {I ′1, . . . , I ′b+1, I

′
b+2} is a

b+ 2-box-representation of G.

Our result in this section depends on Lemma 7 and the following known
structural result.

Lemma 8. Kleitman and West [25] If the max leaf number of a graph is equal
to k, then, it is a subdivision of a graph on at most 4k − 2 vertices.

From this we obtain the following theorem.

Theorem 5. Let G be a connected graph on n vertices with max leaf number
bounded by k. Then we can obtain an additive 2-approximation algorithm to
compute the boxicity of the graph G running in time 2O(k3 log k)nO(1).

17



Proof. Lemma 8 says that we can obtainG as a subdivision of a graph on at most
4k − 2 vertices. Since a subdivision only introduces degree 2 vertices, it follows
that there are at most 4k−2 vertices of degree≥ 3 and equal to 1 in G. Therefore
|V>2 ∪V=1| ≤ 4k− 2. Furthermore since the max-leaf number of the graph is at
most k, the maximum degree of the graph G is at most k, for otherwise, we can
start with a vertex of degree at least k + 1 and grow it to a spanning tree with
more than k leaves. This implies that |V (H)| ≤ 4(k − 2) + k(4k − 2) where H
is as defined at the beginning of this section.

Since there are O(k2) vertices in H, by Proposition 1 enumeration of all box-

b-representation of H takes 2O(bk2 log k) time. Let tw(G) denote the treewidth
of the graph G. The box(H) ≤ tw(H) + 2 ≤ tw(G) + 2 ≤ 2ml(G) + 2 =
2k+ 2 [10, 20]. Hence by Proposition 1 the time taken for enumerating all box-

representations of H of width at most 2k + 2 is upper bounded by 2O(k3 log k).
By Lemma 7, in polynomial time the given representation can be extended to
G. This gives the desired running time of the algorithm and concludes the
proof.

5 Conclusion

In this paper we initiated a systematic study of computing the boxicity of a
graph in the realm of parameterized complexity. The problem is notoriously
hard and it is known to be NP-complete even to determine whether the boxicity
of a graph is at most two. Hence we studied this problem by parameterizing
with parameters that are FPT like the vertex cover number and the max-leaf
number of the input graph. We showed that finding boxicity of a graph when
parameterized by the vertex cover number is FPT, obtained a faster additive
1-approximation algorithm when parameterized by the vertex cover number and
finally obtained an additive 2-approximation algorithm to boxicity of the graph
when parameterized by the max leaf number of the graph. Our other results in-

cluded factor
(

2+ 2

box(G)

)
-approximation when parameterized by the feedback

vertex set number of the input graph and a FPT algorithm for computing boxic-
ity on co-bipartite graphs when parameterized by the vertex cover number of the
associated bipartite graph. Our results were based on structural relationships
between boxicity and the corresponding parameters and could be of independent
interest. We have not only obtained several algorithms for computing boxicity
but also have opened up a plethora of interesting open problems. The main ones
include. (1) Is Boxicity FPT when parameterized by the feedback vertex set
or the max-leaf number? (2) Is it NP-hard to compute the boxicity of graphs
of constant treewidth?

References

[1] A. Adiga, D. Bhowmick, L. S. Chandran, Boxicity and poset dimension.,
in: M. T. Thai, S. Sahni (eds.), COCOON, vol. 6196 of Lecture Notes in

18



Computer Science, Springer, 2010.

[2] A. Adiga, D. Bhowmick, L. S. Chandran, The hardness of approximating
the threshold dimension, boxicity and cubicity of a graph, DAM 158 (16)
(2010) 1719–1726.

[3] K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, inter-
val graphs, and graph planarity using pq-tree algorithms, J. Comput. Syst.
Sci. 13 (3) (1976) 335–379.

[4] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph classes: a survey, SIAM
Monographs on Discrete Mathematics and Applications, Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[5] L. Cai, X. Huang, Fixed-parameter approximation: Conceptual framework
and approximability results, in: IWPEC, vol. 4169 of Lecture Notes in
Computer Science, 2006.

[6] L. S. Chandran, A. Das, C. D. Shah, Cubicity, boxicity, and vertex cover,
Disc. Math. 309 (2009) 2488–2496.

[7] L. S. Chandran, M. C. Francis, R. Mathew, Finding a box representation
for a graph in o(n2∆2 lnn) time, in: ICIT, Bhubaneswar, 2008.

[8] L. S. Chandran, M. C. Francis, N. Sivadasan, Boxicity and maximum de-
gree, J. Comb. Theory Ser. B 98 (2) (2008) 443–445.

[9] L. S. Chandran, M. C. Francis, N. Sivadasan, Geometric representation
of graphs in low dimension using axis parallel boxes, Algorithmica 56 (2)
(2010) 129–140.

[10] L. S. Chandran, N. Sivadasan, Boxicity and treewidth, J. Comb. Theory
Ser. B 97 (5) (2007) 733–744.

[11] Y. Chen, M. Grohe, M. Grüber, On parameterized approximability, in:
IWPEC, vol. 4169 of Lecture Notes in Computer Science, 2006.

[12] M. B. Cozzens, Higher and multi-dimensional analogues of interval graphs,
Ph.D. thesis, Department of Mathematics, Rutgers University, New
Brunswick, NJ (1981).

[13] M. B. Cozzens, F. S. Roberts, Computing the boxicity of a graph by cov-
ering its complement by cointerval graphs, Disc. Appl. Math. 6 (1983)
217–228.

[14] E. D. Demaine, M. T. Hajiaghayi, K. ichi Kawarabayashi, Algorithmic
graph minor theory: Decomposition, approximation, and coloring, in:
FOCS, 2005.

[15] R. G. Downey, M. R. Fellows, Parameterized complexity, Springer-Verlag,
New York, 1999.

19



[16] R. G. Downey, M. R. Fellows, C. McCartin, Parameterized approximation
problems, in: IWPEC, vol. 4169 of Lecture Notes in Computer Science,
2006.

[17] R. G. Downey, M. R. Fellows, C. McCartin, F. A. Rosamond, Parameter-
ized approximation of dominating set problems, Inf. Process. Lett. 109 (1)
(2008) 68–70.

[18] K. Eickmeyer, M. Grohe, M. Grüber, Approximation of Natural W[P]-
Complete Minimisation Problems Is Hard, in: IEEE Conference on Com-
putational Complexity, 2008.

[19] L. Esperet, Boxicity of graphs with bounded degree, European J. Combin.
30 (5) (2009) 1277–1280.

[20] M. R. Fellows, D. Lokshtanov, N. Misra, M. Mnich, F. A. Rosamond,
S. Saurabh, The complexity ecology of parameters: An illustration using
bounded max leaf number, Theory Comput. Syst. 45 (4) (2009) 822–848.

[21] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, S. Saurabh,
Graph layout problems parameterized by vertex cover, in: ISAAC, vol.
5369 of Lecture Notes in Computer Science, 2008.

[22] J. Fiala, P. A. Golovach, J. Kratochv́ıl, Parameterized complexity of col-
oring problems: Treewidth versus vertex cover, in: TAMC, vol. 5532 of
Lecture Notes in Computer Science, 2009.

[23] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical
Computer Science. An EATCS Series, Springer-Verlag, Berlin, 2006.

[24] M. Grohe, M. Grüber, Parameterized Approximability of the Disjoint Cycle
Problem, in: ICALP, 2007.

[25] D. J. Kleitman, D. B. West, Spanning trees with many leaves, SJDM 4
(1991) 99–106.

[26] J. Kratochv́ıl, A special planar satisfiability problem and a consequence of
its NP-completeness, Disc. Appl. Math. 52 (1994) 233–252.

[27] D. Marx, Parameterized complexity and approximation algorithms, Com-
put. J. 51 (1) (2008) 60–78.

[28] D. Marx, Completely inapproximable monotone and antimonotone param-
eterized problems, in: IEEE Conference on Computational Complexity,
2010.

[29] D. Marx, I. Razgon, Constant ratio fixed-parameter approximation of the
edge multicut problem, in: ESA, vol. 5757 of Lecture Notes in Computer
Science, 2009.

20



[30] R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Ox-
ford Lecture Series in Mathematics and its Applications, Oxford University
Press, Oxford, 2006.

[31] F. S. Roberts, Recent Progresses in Combinatorics, chap. On the boxicity
and cubicity of a graph, Academic Press, New York, 1969, pp. 301–310.

[32] E. R. Scheinerman, Intersection classes and multiple intersection parame-
ters, Ph.D. thesis, Princeton University (1984).

[33] C. Thomassen, Interval representations of planar graphs, J. Comb. Theory
Ser. B 40 (1986) 9–20.

[34] M. Yannakakis, The complexity of the partial order dimension problem,
SIAM J. Alg. Disc. Math. 3 (3) (1982) 351–358.

21


	1 Introduction
	2 Preliminaries
	2.1 Interval graphs and box representations
	2.1.1 Equivalent characterization:
	2.1.2 Distinguishing interval representation of an interval graph:

	2.2 Enumeration of b-box representations
	2.3 Vertex cover and boxicity
	2.4 Some definitions and notations

	3 Boxicity parameterized by vertex cover
	3.1 Proof of Theorem 2
	3.2 On the Boxicity of Co-bipartite Graphs
	3.3 Boxicity Parameterized by Feedback Vertex Set Number

	4 Boxicity Parameterized by Max Leaf Number
	5 Conclusion

